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1 Introduction

In polarimetric ISAR the illumination platform, typically airborne, carries a pair of antennas that are
directed toward a fixed point on the surface as the platform moves. During platform motion, the antennas
maintain their gaze on the point, creating an effective aperture for imaging any targets near that point.
The interaction between the transmitted fields and targets (e.g. ships) is complicated since the targets are
typically many wavelengths in size. Calculation of the field scattered from the target typically requires
solving Maxwell’s equations on a large three-dimensional numerical grid. This is prohibitive to use in any
real-world imaging algorithm, so the scattering process is typically simplified by assuming the target consists
of a cloud of independent, non-interacting, scattering points (centers). Imaging algorithms based on this
scattering model perform well in many applications. Since polarimetric radar is not very common, the
scattering model is often derived for a scalar field (single polarization) where the individual scatterers are
assumed to be small spheres. However, when polarization is important, we must generalize the model to
explicitly account for the vector nature of the electromagnetic fields and its interaction with objects. In
this note, we present a scattering model that explicitly includes the vector nature of the fields but retains
the assumption that the individual scatterers are small. The response of the scatterers is described by
electric and magnetic dipole moments induced by the incident fields. We show that the received voltages in
the antennas are linearly related to the transmitting currents through a scattering impedance matrix that
depends on the overall geometry of the problem and the nature of the scatterers.

2 Simulated data

The basic problem for simulating ISAR data is to calculate the polarimetric response from a single scattering
point S that is fixed to a ship near the origin point O (see Fig. 1). We transform to a coordinate system
where the antennas are fixed and the platform motion becomes an effective motion of the ship. We assume
the antennas are a pair of short crossed dipoles with one dipole (H) parallel to the ground (xz plane) and
the other dipole (V) perpendicular to H but directly slightly downward toward point O. Let dH and dV be
the lengths of the H and V dipoles respectively, then we can write the dipole vectors for each antenna as
dH = dH(1, 0, 0) and dV = dV (0, cos θi, sin θi). For a scatterer S at r = (x, y, z) and antenna platform at
ra = (0, h,−za), the magnetic and electric fields at S are given by

Hi =
ikeikRS

4πRs

[

R̂S × (IHdH + IV dV )
]

,

Ei = −
1

ε0c
R̂S ×Hi . (1)

IH and IV are the currents in each dipole, ε0 is the permittivity of free space, k = 2πf/c is the wave number

at frequency f , c is the speed of light, and R̂S = RS/RS is the unit vector between the scatterer and the
antennas (RS is the separation distance).
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Figure 1: ISAR geometry for calculating the reflection from a point scatterer S attached
to a ship near the origin O.

The target scatterer re-radiates the incident electric and magnetic fields, which are received by the dipole
antennas. The calculation of the field scattered by the target can be a complicated problem depending on
the size, shape, and composition of the target. However, if the scattering target is small compared to a
wavelength, it can be modeled as a radiating electric and/or magnetic dipole with strength proportional to
the incident fields. The scattered electric field at the antennas is

Es =
k2eikRS

RS

[

R̂S ×
(

m − R̂S × p
)]

, (2)

where m and p are the induced magnetic and electric dipole moments:

m =
a3

ε0c
Dh · Hi , p = a3De · Ei . (3)

Dh and De are the magnetic and electric polarizability tensors, which depend on the shape and composition
of the target scatterer. The a3 factor nominally accounts for the size (volume) of the scatterer. The scattered
field at the antennas induces voltages VH = −dH · ES and VV = −dV · ES in the dipoles. If we assume the
antenna dipoles have equal length d then dH = d êH , dV = d êV , and we can write the matrix equation

[

VH

VV

]

= −
i(ka)3

4πε0c

(

d

RS

)2

e2ikRS

[

KHH KHV

KV H KV V

] [

IH
IV

]

(4)

that relates the received voltages to the transmitting currents for each dipole. Let V = [VH VV ]T and
I = [IH IV ]T ( ( )T is the matrix transpose), then we can write (4) as

V = −
i(ka)3

4πε0c

(

d

RS

)2

e2ikRSKI . (5)

This is the basic equation evaluated by the ISAR simulator to calculate the antenna voltages induced by the
field reflected from a single point-like scatterer. For a cloud of scatterers, we sum the individual contributions
from each scatterer.
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The matrix elements of K are easier to express if we replace the cross products in equations (1) and (2)

with matrix multiplications. Let b = R̂S ×a. We can write this as a matrix multiplication b = ΩSa, where

ΩS =





0 −R̂Sz R̂Sy

R̂Sz 0 −R̂Sx

−R̂Sy R̂Sx 0



 . (6)

The matrix K can then be written

K =





êT
H G êH êT

H G êV

êT
V G êH êT

V G êV



 , (7)

where G = ΩS(Dh + ΩSDeΩS)ΩS , and êH,V are considered 3 × 1 column vectors.
The shape and composition of the scatterer determines the values of the polarization tensors. For a

perfectly conducting sphere, the tensors have the simple form

Dh = −
1

2
I , De = I , (8)

where I is the identity tensor. The size parameter a is the radius of the sphere. The tensors for a perfectly
conducting wire segment of length L and thickness W are

Dh = 0 , De =
1

3
b̂⊗ b̂ , (9)

where b̂ is the unit vector along the axis of the wire and ⊗ is the outer product. The size parameter a can
be derived from

a3 =
L3

8 ln(L/W )
. (10)

These expressions are to leading order in W/L. Perhaps more interesting are the tensors for a perfectly
conducting disk of radius a and thickness W (to leading order in a/W ):

Dh =
2

3π
b̂3 ⊗ b̂3 , De =

4

3π

(

b̂1 ⊗ b̂1 + b̂2 ⊗ b̂2

)

, (11)

where b̂3 is the unit vector for the axis of the disk (perpendicular to the plane of the disk), and b̂1 and b̂2 are
two orthogonal unit vectors within the plane of the disk. Similar expressions exist for other common shapes
composed of perfectly conducting or dielectric material. In the most general case, the object can be described
by six degrees of freedom, three for the magnetic polarizability and three for the electric polarizability.

These scatterers are features on a ship which is moving on a set course and rotating in response to
wave motion. The scatterer position vector r is broken down into a component due to course and a local
component that specifies the relation between the scatterer and the ship center. In addition, the polarization
tensors are more conveniently described in a coordinate system fixed to the ship. However, these must be
transformed to the earth-based system to correctly calculate the response to the illuminating radiation. Let
rs(t) be the position of the center of the ship at time t from the origin O in Fig. 1, and ρ the position of
the scatterer relative to the ship center. Furthermore, let ψ(t), θ(t), and φ(t) be the roll, pitch, and yaw
angles respectively at time t for the ship. The transformation between the ship-based coordinate system to
the earth-based coordinate system involves a translation specified by rs(t) and the general rotation specified
by ψ,θ, and φ. The rotational part is described by three orthogonal matrices:

Ry(φ) =





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ



 , Rp(θ) =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 , Rr(ψ) =





1 0 0
0 cosψ − sinψ
0 sinψ cosψ



 . (12)
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These are combined to describe the overall rotation between the ship coordinate system and the earth
coordinate system:

Res(φ, θ, ψ) = Ry(φ)Rp(θ)Rr(ψ) . (13)

The scatterer location at time t is then

r(t) = rs(t) + Res (φ(t), θ(t), ψ(t)) ρ . (14)

Given the polarization tensors De
s and Dh

s in the ship coordinate system, the tensors in the earth coordinate
systems are

Dh = Res Dh
s RT

es , De = Res De
s RT

es . (15)

The final expression for the G tensor used to calculate K in equation (7) is

G = ΩS

(

Res Dh
sR

T
es + ΩS Res De

s RT
es ΩS

)

ΩS . (16)

This is a function of time t since both the rotation tensor and the unit vector R̂s that specifies ΩS change
with time.

At this point we can describe the overall algorithm for calculating the polarimetric radar return from
a moving ship. The ship is modeled as a collection of individual scattering points whose shape, size, and
position on the ship are known. In addition, the course, roll, pitch, and yaw of the ship are specified as
functions of time. At any time instant t, the position of each scatterer is calculated using equation (14),
which also requires the rotation tensor (13) at time t. This is then used to calculate G (eq. (16)), K (eq.
(7)), and finally the voltages using equation (5). Summing the contributions from all the scatterers on the
ship gives the overall response at time t. The process is repeated for later times after updating the ship
course and rotation angles.

In addition to reflection from a target vessel, a radar looking at the ocean receives a large number of
reflections from various features of the ocean wave field. These include edge diffraction from wave crests,
Bragg scattering from smaller scale surface roughness, and possible specular reflections from the large waves
themselves. These collective effects, called clutter, create a randomly varying background in ISAR images
of the ocean. The simulation of the radar return from these features would be exceedingly complicated
given the variety of physical mechanisms that scatter radar and the uncertainty in the characterization of
the ocean surface. Rather than attempt such a detailed simulation, we have two possible ways to model
surface clutter: statistical models in the image domain, or simplified scattering models for the surface.
Statistical models attempt to characterize the image clutter in terms of distributions for pixel intensities and
correlations between pixels. A realization of image clutter can be obtained in principle by sampling from
these distributions and adding it to the ISAR image of the target alone. We would expect the pixel clutter
distributions to depend on the environmental conditions and radar parameters. This approach to clutter
modeling should be investigated since it is based on empirical models from actual data. However, it would
take time to research the variety of models and select ones to implement.

An alternative to image clutter models is to create background radar returns from random distributions
of point-like scatterers over the ground plane corresponding to the ocean surface. We use this approach in
the initial version of the ISAR simulator. We model the clutter scatterers as perfectly conducting spheres
with a specified diameter and areal density on the ground surface. A clutter area is selected around the
target and the spheres are distributed uniformly over the area at a specified average areal density. The sum
of the returns from the individual spheres is added to the simulated target data. Currently, the scatterers
are assume to persist unchanged over the total illumination time of the radar. However, radar platform
motion gives the clutter an apparent movement during the illumination time making the modeled clutter
returns change with time. The calculation of the return for each sphere is identical to the calculation for
each scattering point from the target (eq. (4)). Thus the total radar return for a specific frequency f at time
t can be expressed as a sum over NS target scattering points plus a sum over NC clutter scattering points:

V(f, t) =

NS
∑

j=1

VS
j +

NC
∑

l=1

VC
l , (17)
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where VS
j (f, t) is the return from the jth target scattering point, and VS

l (f, t) is the return from the lth

clutter point. These differ in their size a, distance RS(t), and matrix K(f, t). We have added the frequency
and time dependence to indicate the frequency dependence of the scattering amplitude and time dependence
of the geometry for a moving target.

The final step in simulating ISAR data is to incorporate the actual operation of the radar into the
calculation of the radar returns. For example, a stepped frequency radar emits a sequence of N + 1 single-
frequency pulses starting with frequency f0 and ending at frequency f0 + N∆f , i.e. fn = f0 + n∆f :
n = 0, 1, ...,N . Each pulse is emitted at time tn = t0 + n∆t, n = 0, 1, ..., N , where 1/∆t is the pulse
repetition frequency (PRF). Each sequence is called a burst, and is repeated at regular intervals of ∆tb.
Thus the nth pulse from the mth burst occurs at time tmn = t0 + n∆t +m∆tb (m = 0, 1, ...,M), with the
constraint ∆tb > N∆t. The corresponding radar returns are

Vmn = V(fn, tmn) . (18)

A typical ISAR radar might have a starting frequency of 9 GHz (f0 = 9×109), bandwidth of 100 MHz, with
128 pulses in a burst (N = 128) at a pulse repetition frequency of 40 kHz (∆t = 25 µs).

3 ISAR reconstruction

The goal of ISAR is to transform a sequence of received radar pulses into an image of the object in the field
of view. In the previous section we presented a physical model of the radar scattering process describing
how the transmitted radar pulses are reflected from an object. The ISAR reconstruction process unravels
the information about the object that is encoded in the radar returns. This process is typically derived for a
two dimensional geometry (Fig. 2) even though the application space is three dimensional [1]. In this note
we will present the reconstruction process in two dimensions, leaving the three-dimensional case to a later
report.

The imaging geometry for ISAR reconstruction is shown in Figure 2. The target is described by a set of
scattering points P with coordinates (x, y) in the system attached to the target. This system is rotated from
the radar coordinate system (X, Y ) by an angle θ(t). The standoff distance (range) to the target center is
R(t). Both R and θ change with time as the target moves relative to the radar:

R(t) = R0 + vt +
1

2
at2 , (19)

θ(t) = θ0 + Ωt+
1

2
αt2 , (20)

where v and a are the target velocity and acceleration in the range direction. Ω and α are the rotational
velocity and acceleration of the target. The velocities and accelerations are assumed to be constant over the
time the radar takes to acquire an imaging data set (dwell time). The relationship between the coordinates
of a scattering point P in the target reference frame and the coordinates in the radar frame is

X = x cos θ(t) − y sin θ(t) , (21)

Y = x sin θ(t) + y cos θ(t) . (22)

For R(t) >> L, the range from the radar to the scattering point is r(t) ' R(t) + Y , i.e.

r(t) ' R(t) + x sin θ(t) + y cos θ(t) . (23)

Let the radar emit a single frequency pulse with amplitude A(ω) and angular frequency ω, then we can
write the reflected signal for a single polarization component as [1]

V (ω, t) = A(ω)

∫∫

q(x, y)ei[ωt−2kr(t)] dx dy , (24)
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Figure 2: Imaging geometry for two-dimensional ISAR reconstruction. The lower case
(x, y) denote the coordinate system attached to the target, which is rotated an angle θ from
the fixed radar coordinate system (X, Y ). Both the rotation angle and the standoff distance
R are functions of time t. The distance from the radar to a specific scattering point P
on the target from is r(t). The standoff distance is assumed to be much greater than the
characteristic size L of the target, R(t) >> L.

where k = ω/c, c is the speed of light, and q(x, y) is the distribution of scatterers in the target. The range of
integration is implied to be over the target. In typical stepped frequency radar, the duration of each pulse
Tp is small compared to the time between pulses (Tp << ∆t). During the pulse, we can neglect any target
movement so that r(t) is constant. The return signal for the nth pulse of the mth burst can be written

Vmn(t) = Ane
iωnt

∫∫

q(x, y)e−2iknr(tmn) dx dy , ωn = 2πfn . (25)

If we apply base-banding we obtain

Vmn =
1

Tp

∫ Tp

0

Vmn(t)e−iωnt dt

= An

∫∫

q(x, y)e−2iknr(tmn) dx dy . (26)

Substituting equation (23) for r(t) gives

Vmn = Ane
−2iknR(tmn)

∫∫

q(x, y)e−2ikn[x sin θ(tmn)+y cos θ(tmn)] dx dy . (27)

During the dwell time, the radar emits a sequence of M bursts, each with N pulses, for a total duration
of M∆tb. Assuming we can neglect the target’s angular acceleration over that time and that M∆tbΩ << 1,
then we have

sin θ(tmn) ' sin θ0 + Ωtmn cos θ0 , (28)

cos θ(tmn) ' cos θ0 − Ωtmn sin θ0 . (29)
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Thus
x sin θ(tmn) + y cos θ(tmn) ' Y0 + ΩtmnX0 , (30)

where Y0 = x sin θ0 + y cos θ0 and X0 = x cos θ0 − y sin θ0. We can now express the received pulse amplitude
Vmn as

Vmn ' Ane
−2iknR(tmn)

∫∫

q(X0, Y0)e
−2ikn(Y0+ΩtmnX0) dX0, dY0

' 4π2Ane
−2iknR(tmn)Q(2knΩtmn, 2kn) , (31)

where Q(κx, κy) is the two-dimensional spatial Fourier transform of q(x, y):

Q(κx, κy) =
1

4π2

∫∫

q(x, y)e−i(κxx+κyy) dx dy . (32)

The inverse transform is

q(x, y) =

∫∫

Q(κx, κy)e
i(κxx+κyy) dκx dκy . (33)

Equation (31) is the principle result of this section. It shows that the sequence of base-banded returns
(Vmn) sample the 2D spatial Fourier transform of the target scattering distribution Q(κx, κy). The purpose
of the reconstruction algorithm is to remove the prefactors and perform the inverse Fourier transform to
recover the target distribution q(x, y). The prefactors are of two types: the transmitted pulse amplitudes An

which should known and can be eliminated through calibration, and the phase factor (complex exponential)
which is generated by the variation in range of the target over the dwell time. The estimation and removal
of the range variation factor is called coarse motion compensation and there are multiple algorithms that
can be used [1]. Once these prefactors are removed we can write the remaining part as

Q̂mn = Q(2knΩtmn, 2kn) . (34)

The second argument of Q samples the Fourier variable κy which is the range direction in physical space.
The first argument samples κx, the cross-range variable, non-uniformly. The target rotational velocity Ω
is usually not known, making the cross-range scaling uncertain. This argument can be interpreted as the
Doppler shift of the frequency pulses due to the target’s rotation. Since the tangential velocity of each
scatterer in the target is proportional to its distance from the rotation axis, the Doppler shift can be used to
resolve its cross-range position. The primary difficulty in inverting eqn. (34) is the sampling in the Fourier
spatial frequency domain. In particular, the sampling in κx depends in both indices m and n. In fact kn

appears explicitly as a factor in the κx argument. Expanding this argument explicitly using the definitions
of kn and tmn for a stepped frequency radar gives

2Ωkntmn =
4πΩ

c

[

f0t0 + n(∆ft0 + f0∆t) +mf0∆tb +mn∆f∆tb + n2∆f∆t
]

. (35)

Choosing the time origin to be the beginning of the pulse sequence (t0 = 0) simplifies this to

2Ωkntmn =
4πΩf0
c

[

n∆t+m∆tb +
∆f

f0

(

mn∆tb + n2∆t
)

]

=
4πΩf0
c

(n∆t+m∆tb)

(

1 + n
∆f

f0

)

. (36)

For reference the κy sampling is given by

2kn =
4πf0
c

(

1 + n
∆f

f0

)

. (37)
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Figure 3: Sampling of the spatial Fourier transform for a typical ISAR radar (see text).
The red dots are the true samples based on equations (36) and (37). The black dots is the
uniform sampling assumed by the conventional inverse FFT method [1]. Note the change
in initial slope of the lines of true sample points as κx increases.

As n increases from 0 to N , keeping m fixed, the κx argument increases, defining a curve in the κx−κy plane.
Since the highest power is n2, the curve is quadratic. As m varies the sampling defines a sequence of quadratic
curves, each starting at κx = 4πΩf0t0m∆tb/c, κy = 4πf0/c with different initial slopes. Figure 3 shows
the sampling in the spatial Fourier space specified by equation (36) for the specific case of Ω = 10 deg /s,
∆t = 25 µs, N = 128, and ∆f/f0 = 0.0111. The red dots are the true samples and the black dots show the
sampling assumed by the conventional inverse FFT imaging method [1]. Note that the initial slopes of the
true sampling curves change with increasing κx. The curvature of the sample curves is imperceptible on this
scale since the quadratic term in (36) is very small.

The conventional ISAR reconstruction technique [1] ignores the true sampling and assumes the samples
are arranged on a uniform grid whose grid lines are parallel to the κx and κy axes. The final step is then to
perform a two-dimensional inverse Fast Fourier Transform (iFFT) to create an image of the target object.
Since the target rotation rate is usually unknown, the cross-range (x) scale is ambiguous. We can calculate
the result analytically by applying the inverse Discrete Fourier Transform (iDFT):

q̂(x, y) =

M/2
∑

m=−M/2

N/2
∑

n=−N/2

Q̂mne
2πi(mx/Lx+ny/Ly) , (38)

where we have shifted the summation indices for convenience. Both the iFFT and iDFT create images that
are periodic in x and y with periods Lx and Ly respectively. In practice, only one period of the image

is required. Combining the definitions of Q(κx, κy) (eq. (32)) and Q̂mn (eq. (34)) and interchanging the
integration and the summation gives

q̂(x, y) =
1

4π2

∫ ∫

dx′ dy′ q(x′, y′)

M/2
∑

m=−M/2

N/2
∑

n=−N/2

e2i(πmx/Lx−Ωkntmnx′) e2i(πny/Ly−kny′) . (39)
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This has the form of a convolution between the true target scattering distribution q(x′, y′) and an imaging
point spread function (PSF) h(x, y; x′, y′) represented by the double summation. The PSF describes the
blurring created by the imaging system. The ideal PSF would be h(x, y; x′, y′) = αδ(x − x′)δ(y − y′) so
that q̂(x, y) = αq(x, y), i. e. the image is a scaled version of the target. However, this is never attained in
practice due to the finite wavelength of the radiation and limited aperture of the imaging system. One way
to assess the quality of the imaging system is to measure how well the PSF approximates the ideal given the
wavelength and aperture constraints. Note that the double summation cannot be factored into the product
of two summations due to the tmn term in the first exponential.

If the fractional bandwidth of the radar is small (N∆f/f0 � 1), then

2Ωkntmn '
4πΩf0
c

(n∆t+m∆tb) . (40)

Furthermore, since ∆tb ≥ N∆t we have

(

m−
1

2

)

∆tb ≤ (n∆t+m∆tb) ≤

(

m+
1

2

)

∆tb . (41)

This means the effect of the n∆t term is small compared to m∆tb except for the lowest order terms of
the sum over m (|m| . 10). Another interpretation is that if the 2D Fourier transform Q(κx, κy) is slowly
varying over spatial frequency scales ∆κx = 4πΩf0∆tb/c, then we can ignore the variation of eq. (36) over
the summation index n and write

2Ωkntmn '
4πΩf0
c

m∆tb . (42)

This is the approximation assumed in conventional ISAR reconstruction [1], which reduces the final inversion
step (eq. (38)) to an inverse FFT. Here we show explicitly the approximations that lead to the iFFT method,
and are not often discussed in presentations of ISAR reconstruction.

Neglecting the n2 term in eq. (36) and using the identity

N/2
∑

n=−N/2

e2πina =
sin [(N + 1)πa]

sin(πa)
, (43)

we can perform the sum over n to obtain

h(x, y; x′, y′) = e−4πif0y′/c

M/2
∑

m=−M/2

sin [(N + 1)πam(y; x′, y′)]

sin [πam(y; x′, y′)]
e2πim(x/Lx−2Ωf0∆tbx′/c) , (44)

where

am(y; x′, y′) =
y

Ly
−

2∆fy′

c
−

2Ωf0∆tx
′

c

(

1 +
∆f

f0

∆tb
∆t

m

)

. (45)

If we assume ∆tb/∆t ' N , then
∆f

f0

∆tb
∆t

m '
N∆f

f0
m ≤

N∆f

f0

M

2
. (46)

By limiting the number of bursts M to be much smaller than the reciprocal of the bandwidth, we can neglect
the m term in am (am ' a0) and use (43) to evaluate the sum over m to obtain

h(x, y; x′, y′) =
sin [(N + 1)πa0(y; x

′, y′)]

sin [πa0(y; x′, y′)]

sin [(M + 1)πb(x; x′)]

sin [πb(x; x′)]
e−4πif0y′/c , (47)

with

b(x; x′) =
x

Lx
−

2Ωf0∆tbx
′

c
. (48)
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This is equivalent to sampling the spatial Fourier transform along the black dots in Fig. 3.
Up to this point we have not specified the lengths Lx and Ly of the imaging domain. For discretely

sampled Fourier transforms, the lengths are related to the fine scale of the sampling, i.e. Ly = 2π/∆κy,
Lx = 2π/∆κx. For κy we can write

∆κy = 2 (kn+1 − kn) =
4π∆f

c
, (49)

so that
Ly =

c

2∆f
. (50)

Proceeding similarly for κx gives

∆κx = 2Ωkn (tm+1,n − tmn) =
4πΩf0∆tb

c

(

1 +
n∆t

f0

)

. (51)

In this case the choice for Lx is somewhat ambiguous since ∆κx depends on n, the index for κy. If the
fractional bandwidth of the radar is small, this variation can be neglected (n = 0) so we obtain

Lx =
c

2Ωf0∆tb
. (52)

Given these expressions for Lx and Ly, am and b become

am(y; x′, y′) =
y − y′

Ly
−

∆t

∆tb

x′

Lx

(

1 +
∆f

f0

∆tb
∆t

m

)

'
y − y′

Ly
−

x′

NLx

(

1 +
N∆f

f0
m

)

, (53)

b(x; x′) =
x− x′

Lx
. (54)

This defines the periodicity of the PSF and the resulting image q̂(x, y). Note that Ly is determined only
by the radar parameters while Lx requires knowledge of the object rotation rate Ω. Since the number of
samples in y is N , the range resolution of the image is

∆y =
Ly

N
=

c

2N∆f
. (55)

Thus the bandwidth N∆f of the radar controls the range resolution, and the number of frequencies N
determines the imaging domain size in the range (y) direction. The cross range (x) resolution is given by

∆x =
Lx

M
=

c

2Ωf0M∆tb
. (56)

This can be refined by increasing either the radar center frequency f0 or the overall dwell time M∆tb.
However, the actual cross range resolution attained by the system depends on the object rotation rate Ω,
which may not be controllable. Alternatively, we can express the cross range resolution as the radar center
wavelength λ0 = c/f0 divided by twice the angular rotation of the target (θ = ΩM∆tb) during the dwell
time (∆x = λ0/2θ). The greater the rotation, the better the cross range resolution. These estimates for
range and cross-range resolution can be found in ISAR reference texts such as Özdemir [1].

4 Examples

To illustrate the generation and reconstruction of polarimetric ISAR data, we consider a simulated test object
consisting of an arrangement of small perfectly conducting rods (Fig. 4). The arrangement and direction
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Figure 4: Test object consisting of two circles of twelve perfectly conducting thin rods
and a central line of nine rods. The rod directions are chosen to illustrate the responses to
different radar polarization components. Each rod is nominally 10 cm long.

were chosen to show the variation of object visibility with radar polarization. The electric field incident on
each rod induces a current along the axis, which then radiates a dipole scattered field. Simulated data is
generated for a stepped frequency radar with starting frequency of 9 GHz (f0 = 9 × 109) and bandwidth
of 100 MHz. There are 128 pulses in each burst (N = 128) with a pulse repetition frequency of 40 kHz
(∆t = 25 µs). The antenna is a crossed dipole (element length 30 cm) and placed at a horizontal range
of 5 km from the object. Two antenna altitudes are considered, 0 and 1000 meters. The 0 meter altitude
is effectively a two-dimensional case where the incident electric field is in a vertical plane and some of the
rods may not generate any significant returns for particular polarizations. The 1000 meter altitude is a
more realistic three dimensional situation where each rod will contribute to the overall radar return for all
polarizations.

Figure 5 shows ISAR reconstructions using the conventional inverse FFT algorithm of simulated scattering
data from the test object in Fig. 4. Each image is created from 128 bursts as the test object rotates around
the vertical (y) axis (yaw) at a rate of 5◦/sec. For the upper row the antenna elevation was zero, which
creates a largely two dimensional scattering problem. The circular arrangements of rods in the test object
are only visible in the HH polarization since both the incident and scattered electric fields in the HH case
are in the horizontal plane. Similarly, only the vertical rods are visible in VV. The HV image is zero since
all the rods are either horizontal or vertical, and the scattered fields at the antenna reflect this symmetry. In
the lower row, the antenna was at an elevation of 1000 meters (11.3◦ grazing angle). For this case, the rods
int he object do not align with polarization of the incident field, producing returns from all rods for each
polarization, including cross-polarization (HV). In both 2D and 3D cases, the visibility of each rod around
the two circles varies accordingly to its alignment with the incident electric field vector. The response is
largest when the rod axis is aligned with the field. This is particularly noticeable in the HH images.

In the previous section we showed that the sampling of the two-dimensional spatial Fourier transform of
the object is non-uniform (fig. 3). The ISAR reconstructions above used the conventional approach which
ignores the non-uniformity. Since the sampling is known (eqs. (36) and (37)) we can resample the data on
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Figure 5: ISAR reconstructions of simulated data for the test object in Fig. 4. Upper row
shows 2D case (zero elevation) and lower row the 3D case (1000m elevation). The columns
are reconstructions for different polarization combinations (HH, HV, VV), displayed in dB.

to a uniform grid before performing the inverse FFT, eliminating distortion caused by the original sampling.
Rewriting the κx sampling,

κx = 2Ωkntmn =
4πΩf0∆tb

c

(

m+
n

N

) (

1 + bf
n

N

)

, (57)

we find that the resampling depends only on the fractional bandwidth bf = N∆f/f0 and the number of
pulses in a burst (N) when ∆tb = N∆t. For the test object images, the fractional bandwidth is bf = 1/90.
Figure 6 shows a comparison between the original images (left column) and the resampled images (right
column). Only slight differences are observed since the fractional bandwidth is small and the number of
pulses in a burst is large. We would expect a greater effect for wider band radars.

5 Summary

In this note we have presented described a fully polarimetric ISAR data simulator that represents the target
object (e.g. a ship) as a collection of electrically small scatterers. We also lay out the conventional recon-
struction approach for creating images from the scattering data, with careful attention to the assumptions
that are used to simplify the mathematics. Finally, we show simulated polarimetric ISAR images for a test
object to demonstrate the differences between polarizations and illustrate the geometric dependence on the
scattering object. We also show how to correct for the non-uniform Fourier sampling of the raw data, though
the correction made little difference for narrow band radars.
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Figure 6: ISAR reconstructions of simulated data for the test object in Fig. 4. Left column
shows images using the conventional inverse FFT algorithm. Right column shows images
using resampled data.
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